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Introduction 
 
The fate of organic molecules has been studied extensively by NMR both in vitro and 
in vivo. With this approach important information about metabolism and preference 
of substrates at different pathological conditions can be revealed (see for example 
(1-5)). Despite significant technological advancements (increasing field strength and 
improved coil design), the application of such studies is, however, limited by an 
intrinsically low sensitivity and long experiment times. Thus, these approaches do 
not enable functional imaging in the sense of being able to track real-time changes in 
metabolism of a substance present in near-physiological concentration. 
 
Fundamentally, the low sensitivity originates from the low magnetic energy of nuclear 
spins, compared to the thermal energy at room temperature, which leads to a low 
spin polarization even in the strongest NMR magnets. For instance, at a magnetic 
field strength of 1.5 T and room temperature, 13C spins are polarized to only 1.3 ppm, 
and an improvement of several orders of magnitude is thus theoretically possible. A 
range of methods have been proposed to enhance the polarization of nuclear spins 
(denoted hyperpolarization methods), e.g. brute force by applying high magnetic field 
strengths and going to temperatures close to zero Kelvin (see also Appendix, 
equation A5)), optical pumping of noble gases (see for example (6), para-hydrogen 
induced polarization (PHIP) (7-9), and Dynamic Nuclear Polarization or DNP in short 
(10,11). All these methods have demonstrated the potential of creating non-thermal 
polarization close to unity. 
 
In this contribution, we endeavor to give a brief overview on the application of DNP 
to generate highly polarized 13C-enriched substrates for in vivo MR. We will show 
that this technology allows true molecular imaging. Most excitingly, metabolism can 
be tracked by MR, thus enabling a novel approach for assessing tissue viability 
based on cellular function. 
 

13C hyperpolarization by DNP and technical considerations 
 
DNP is carried out in the solid state in order to create large nuclear polarizations. At 
a temperature 1 K and in a field of 3 T, the thermal 13C polarization is still far from 
unity (polarization < 0.1%), but electrons are highly polarized (>90%) due to the 
much larger γ of the electron (c.f. Appendix Eq. A2). If molecules carrying unpaired 
electrons (commonly referred to as radicals) are frozen together with a 13C-
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containing substance, it is possible to partially transfer polarization to the nuclear 
spins by irradiating the sample with microwaves close to the electron resonance 
frequency (10,11). The Microwave irradiation establishes coupling between the 
electronic and nuclear spin reservoirs, thus increasing the 13C nuclear polarization in 
the solid material to typically 20% or more under these conditions. For DNP to be 
efficient, it is adamant that the radical and the 13C-containing substrate are intimately 
mixed. This is achieved if crystallization is avoided, i.e. if the DNP sample forms an 
amorphous solid. 
 
The large non-equilibrium polarization needs to be preserved during rapid dissolution 
of the solid sample. The solid can be transformed into an injectable liquid, with small 
to negligible polarization losses (see (10)). Figure 1 below illustrates the enormous 
enhancement in sensitivity for 13C by this method. For a detailed description of the 
polarization apparatus see (10). 
 

 
Figure 1: A) 13C spectrum of urea (natural abundance 13C) hyperpolarised by the DNP-NMR method. 
The concentration of urea was 59.6 mM and the polarisation was 20% (SNR=4592). B) Thermal 
equilibrium spectrum of the same sample at 9.4 T and room temperature, SNR=7. This spectrum is 
acquired under Ernst angle conditions (pulse angle of 13.5° and repetition time of 1 s based on a T1 of 
60 s), with full 1H decoupling. The signal is averaged during 65 hours (232,128 transients) (Figure 
adapted from (10)). 

 
In addition to the chemical requirements for carrying out DNP in the solid state, 
probes for hyperpolarized 13C MR have to have sufficiently long T1 relaxation time in 
the liquid state. Working with 13C-enriched substrates, it is thus necessary to 
determine which site should be labeled in order to give the most favorable conditions. 
Obviously, the window of opportunity is given by the timescale of the non-equilibrium 
polarization decaying back to thermal equilibrium. 
 
Furthermore, a number of biological requisites have to be met as well; the compound 
may be an endogenous or endogenous substance, but it has to reach the target 
tissue on the timescale of T1 and be taken up in cells. Most importantly, a suitable 
13C-enriched substrate should exhibit MR sensitivity to its chemical environment. 
Such changes should be reflected in the 13C chemical shift in order to be detected by 
hyperpolarized 13C MR. The tool of choice to evaluate different kind of probes using 
hyperpolarized 13C in the living tissue is spectroscopic imaging or chemical shift 
imaging (for an excellent description of spectroscopic imaging see (12)). 
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Another area where a new mindset is required is the MR acquisition strategy. As the 
large polarization generated by DNP is non-renewable, the MR sequences employed 
for hyperpolarized MR have to make efficient use of the magnetization. The 
acquisition time window is limited by T1; thus, the data need to be acquired rapidly. A 
small molecule labeled with 13C in the carbonyl position will generally have a 
sufficiently long T1 in vivo. Apart from T1 relaxation, T2, T2* and diffusion or flow also 
influence the panel of applications for hyperpolarized imaging techniques. The field 
dependence of T2, T2* is critical for the choice of field strength and imaging strategy. 
 

13C-pyruvate: A probe for 13C metabolic imaging 
 
An example of a molecule meeting the requirements for hyperpolarized 13C MR is 
pyruvate. Pyruvate is a key molecule involved in glycolysis. It is taken up by cells 
through a diffusion facilitated transport system (MCT), and its metabolic pathways 
are well characterized; its main metabolites in vivo are alanine, lactate, and 
bicarbonate. Pyruvate is thus ideally suited to probe LDH activity, and to distinguish 
aerobic and anaerobic metabolism (see Figure 2). 
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Figure 2: Schematics of intracellular pyruvate metabolism. Abbreviations are: LDH: lactate 
dehydrogenase, PDH: pyruvate dehydrogenase, PC: pyruvate carboxylase, MCT: 
monocarboxylic acid transporter, TA: transaminase. 

 
The key requirement for conducting real metabolic imaging is rapid turnover of the 
substrate whilst the non-equilibrium polarization is available. As can be seen in 
Figure 3, this is indeed the case, making it possible to study the fate of pyruvate in 
real time upon injection. In all experiments reported here, 1-13C-pyruvate has been 
used. The rationale for enriching the carboxyl-carbon is given by its relatively long 
liquid-state T1 in aqueous solution of nearly one minute, and by the ability to 
distinguish pyruvate and its metabolite from the chemical shift of their 1-13C MR 
resonances. The preservation of the polarization during the enzyme reaction is yet 
another non-trivial requisite for successful 13C MR metabolic imaging. In 
complementary in vitro experiments using enzyme solutions, we established that the 
metabolic conversion of the substrate is not associated with any significant loss of 
polarization.  
 

 3



Bicarbonate

150160170180190200

PPM

Pyruvate C1

Lactate C1

Alanine C1

Pyruvate C1
(hydrate)

t=50s

t=0s

Bicarbonate

150160170180190200

PPM

Pyruvate C1

Lactate C1

Alanine C1

Pyruvate C1
(hydrate)

t=50s

t=0s

 
Figure 3: Time series of whole-body 13C MR spectra (every 3 s) after injection of 3 ml of 
hyperpolarised Na-1-13C-pyruvate solution into the tail vein of a rat. The data were acquired on a 
clinical 1.5 T MR system. 

 
Interpreting the data in Figure 3, the initial up-slope shows the wash-in of the 
substrate. The metabolically inactive hydrate form is in equilibrium with pyruvate. 
Rapidly after injection, lactate and alanine are formed, as well as bicarbonate upon 
entering the Krebs cycle in the mitochondria. The decay of the pyruvate signal is 
thus a function of both 13C T1 relaxation and metabolic turnover. Based on this time 
series, the best time for spatially resolved acquisitions can be determined. The most 
obvious strategy is to perform standard spectroscopic imaging with somewhat 
reduced flip angle. However, spectroscopic imaging is not a fast imaging technique 
due to only one RF-pulse per repetition time and the high amount of phase encoding 
steps needed. Thus, the information obtained will reflect the average intensity of the 
signals during the acquisition window. 
 
We have performed hyperpolarized 13C MR studies with pyruvate in both healthy and 
diseased animals in order to demonstrate the potential of this exiting new modality. 
Amongst others, we have studied rats bearing P22 tumors. An example of such a 
spectroscopic imaging exam is shown in Figure 4, where metabolic maps of pyruvate, 
alanine, and lactate have been computed from the spectral MR data and 
superimposed on the 1H MR reference image. 
 

 
Figure 4: Hyperpolarized 13C MR in a rat bearing a P22 tumor. The metabolic maps were computed 
from the spectroscopic imaging data by time-domain analysis of the individual spectra. 
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Improved imaging strategies 
 
Spectroscopic imaging is initial the method of choice to acquire the full 13C MR 
spectrum. Obviously, the repetition time should be as short as possible. With 
repetition times of 100 ms or less, sufficient time is available to acquire a MR 
spectrum with high enough spectral resolution to identify the metabolites. This 
means that a 16x16 matrix with weighted k-space sampling can be acquired in about 
15 seconds. This is fast enough to map the metabolic pattern over a volume of 
interest. The generation of metabolic maps by quantifying the metabolite MR signals 
in the spectra requires more advanced fitting routines. The best approach appears to 
quantify metabolite levels using time domain fitting procedures that overcome the 
limitations of the frequency domain in this specific application (see for example (14-
16). 
 
Higher matrix sizes cannot be reached in a reasonable amount of time. Furthermore, 
the RF- pulse angle would have to be reduced even more to preserve polarization. 
Other approaches, such as the Dixon method (13), may be employed, provided all 
frequencies of interest are known in advance. Further, long T2 relaxation times may 
be exploited using multi-echo MR imaging sequences with EPI readouts. A 90-180 
echo train would make it possible to image the same volume in a much higher 
resolution in seconds, provided that the T2 is long enough and a work-up would be 
available to reconstruct the metabolite specific MR images (17-20) This new type of 
sequences specially engineered to image the compound and its metabolites would 
enable clinical use of 13C-imaging due to its relative simplicity and applicability. 
 

Conclusion 
 
The introduction of injectable, hyperpolarized 13C-substances (10,21,22) opens a 
new field of MR imaging. MRI in conjunction with hyperpolarized 13C-labelled 
imaging tracers allows true molecular MR imaging to be performed in vivo (21). This 
novel platform technology will offer radiologists new information of importance for 
medical diagnosis and treatment. The exciting prospect of probing cellular 
metabolism with the resolution of MR will provide valuable diagnostic information at a 
molecular level. 
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